

RECOSTAL® Bewehrungstechnik

RECOSTAL® Coupler Schraubanschluss für Stahlbeton RECOSTAL® Bewehrungsanschlüsse

Übersicht

• Über uns	4
Schraubanschluss für Stahlbeton RECOSTAL® Coupler	6
Anschlussvarianten	6
RECOSTAL® RC Muffenstab	8
Zubehör	12
• RECOSTAL® Couplerboxen	13
RECOSTAL® Couplerboxen glatt	13
RECOSTAL® Couplerbox RSH-C verzahnt	14
RECOSTAL® Couplerbox RSV-C verzahnt	15
RECOSTAL® Abschalelemente mit RECOSTAL® Coupler Schraubanschluss	16
• RECOSTAL® Bewehrungsanschlüsse	17
RECOSTAL® RSH	20
RECOSTAL® RSV	24
RECOSTAL® VHQ	26
RECOSTAL® RSH Sondertypen	27

Wir machen Infrastruktur sicherer, stärker und smarter seit 1865.

Wir sind auf über 1.500 Mitarbeiter und 25 Lizenznehmer in über 50 Ländern gewachsen.

Vom Stahl in unserer ersten verstärkten Brücke aus dem Jahr 1903 bis hin zu ferngesteuerten Robotern, die den Zustand von Schrägseilen überprüfen - wir tragen dazu bei, die Lebensdauer der neuen und alternden Infrastrukturen der Welt zu verlängern.

Private und öffentliche Eigentümer, Ingenieure und Bauunternehmen nutzen unsere Technologie für Projekte in Bereichen wie Brücken, Gebäude, Bodenstabilisierung, Windtürme und Tunnel. Zu den Projekten gehören die Golden Gate Bridge, der Panamakanal, die Kap Shui Mun Bridge und der Freedom Tower.

Die Anforderungen an die Infrastruktur haben sich geändert - und wir uns auch. Unsere Wurzeln? Brücken, eines der komplexesten Bauwerke, die Sicherheit und Festigkeit in allen möglichen anspruchsvollen Umgebungen erfordern. Obwohl wir als Betonunternehmen gegründet wurden, änderte sich das Anfang des 20. Jahrhunderts, als wir unseren Schwerpunkt als Subunternehmer für Bauvorhaben (und Instandhaltung) in mehreren Sektoren fanden.

Wenn man DYWIDAG hört, denkt die Bauindustrie seit über 100 Jahren vor allem an unseren Gewindestab, der wahrscheinlich in einem großen Teil der Infrastruktur Ihrer Stadt zu finden ist.

DYWIDAG ist ein bekanntes Unternehmen für Geotechnik und Vorspannung. Aber es gibt noch mehr: DYWIDAG Schalungsankertechnik, RECOSTAL® Bewehrungs- und Schalungstechnik, CONTEC® Abdichtungs- und Flächenabdichtungstechnik, die die Geschäftseinheit DYWIDAG Concrete Technologies bilden.

Unsere Technologien sind für hochsichere Systeme weithin anerkannt. Unsere Hauptproduktion befindet sich in Polen und Deutschland. Die Produkte tragen Zulassungen nach internationalen Qualitätsstandards.

Unsere Ursprünge:

- Dyckerhoff & Widmann AG (DYWIDAG) gründeten eine kleine Zementfabrik in Deutschland.
- 1950 DYWIDAG startet das Lizenzgeschäft für Bausysteme mit dem Schwerpunkt Brückenspannung.
- DYWIDAG SYSTEMS INTERNATIONAL

 (DSI) wird gegründet, um das
 internationale Geschäft auszubauen.
 Investiert in Forschung und ein zweites
 globales Segment: Geotechnik.
- DSI betritt den europäischen Markt für Betonzubehör durch Übernahmen in Frankreich und Deutschland: Arteon, Technique Beton, Mandelli-Setra, CONTEC®.
- Der private Kapitalgeber Triton wird neuer Anteilseigner der DSI.
- Entwicklungen von Bauprojekten im Nahen Osten und in Asien, einschließlich neuer Joint Ventures in Katar und Indien.
- 2018 Alpin Technik und Datum Group wurden erworben, um DSI's Robotik und Überwachung zu verstärken.
- Betonzubehör wird als Geschäftseinheit innerhalb der DYWIDAG geschaffen.
- DSI erwirbt PARTEC.
- DSI wird DYWIDAG.
- DY.CO wird als neue paneuropäische
 Geschäftseinheit von DYWIDAG gegründet.
- DY.CO wird zu DYWIDAG Concrete Technologies.

DYWIDAG CONCRETE TECHNOLOGIES

- 40+ Jahre Erfahrung
- Händler in über 40 Ländern
- Maßgeschneiderte Produkte
- Fokus auf Qualität und Sicherheit
- Hergestellt in Europa

Anwedungen

- Gewerbebau
- Wohnungsbau
- Bauingeneurwesen
- Betonfertigteile
- Strukturelle Reperaturen

Kunden

- Generalunternehmer
- Vertriebspartner
- Anwender

Unsere Marken

RECOSTAL® Schalungstechnik

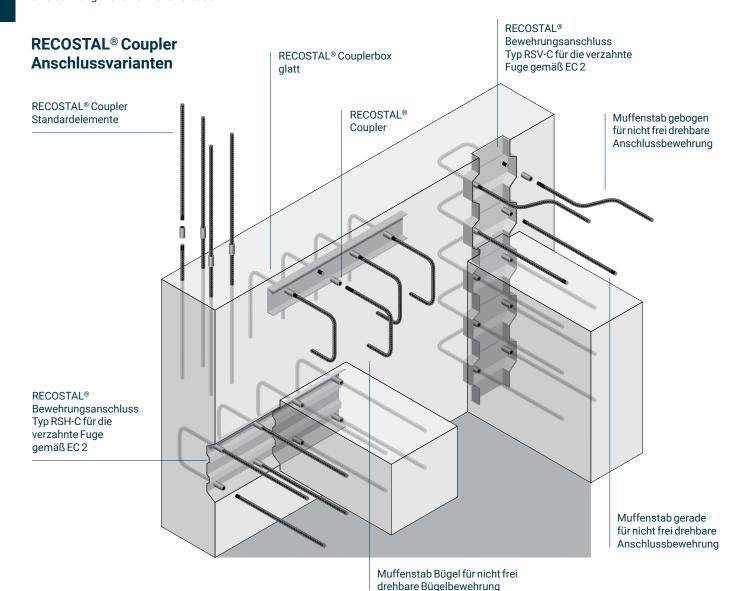
RECOSTAL® Bewehrungstechnik

CONTEC® Abdichtungstechnik

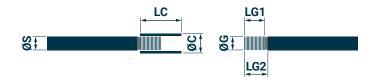
CONTEC® Flächenabdichtungstechnik

DYWIDAG® Schalungsankertechnik

RECOSTAL® Coupler


Schraubanschluss für Stahlbeton

Mit dem neuen Bewehrungsanschluss
RECOSTAL® Coupler erweitert
DYWIDAG Concrete Technologies das
Produktportfolio im Bereich der RECOSTAL®
Bewehrungstechnik. RECOSTAL® Coupler
Schraubanschlüsse bieten eine optimale
und sichere Verbindung im Stahlbetonbau,
wenn Bewehrungsstahl gespleißt werden
muss. Die Schraubanschlüsse sind mit
Innengwinde in den Größen 12 mm bis
28 mm gemäß DIBt-Zulassung und
12 mm bis 25 mm gemäß CARES-Zulassung
erhältlich (andere Größen auf Anfrage).
Dazu können die Bewehrungseisen in
diversen Längen und Formen direkt über


unsere Produktionsstätten geordert und hergestellt werden. Die RECOSTAL® Coupler können in Kombination mit vielen Produkten aus dem Portfolio von DYWIDAG Concrete Technologies verwendet werden, wie zum Beispiel an den RECOSTAL® Abschalelementen oder als Bewehrungsanschluss mit der RECOSTAL® Couplerbox. Dies bietet Ingenieuren und Bauunternehmern maximale Designflexibilität. Der RECOSTAL® Coupler spart Zeit und Kosten, gewährleistet einen sicheren Anschluss und schont Ressourcen durch die Einsparung von Bewehrungsstahl.

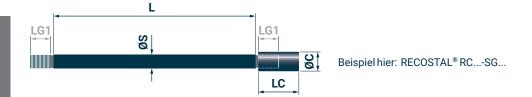
Produktvorteile

- Hohe Ermüdungsfestigkeit, unter anderem beim Einsatz in Brücken
- 100%ige Kraftübertragung
- Allgemeine technische Zulassung: abG, CARES, ETA
- Vielseitige Kombinationsmöglichkeiten mit RECOSTAL[®] Schalungssystemen
- · Effizient und wirtschaftlich
- · Geringerer Planungsaufwand
- Ressourcenschonend
- Designflexibilität

RECOSTAL® Coupler Schraubanschluss

	Muffenstab	Ø Cou	ıpler 1)	Ge	ewinde Muffensta	ab	
Produkt	ØS	Außen ØC	Länge Coupler LC	Länge Gewinde LG1	Schällänge LG2	Außen ØG	Anzugsmoment M
Kürzel	mm	mm	mm	mm	mm	mm	Nm
	12	19	35	18,5	19	12,38	60
	14	22	40	21,5	22,5	14,5	80
	16	25	45	24	25	16,5	80
RC	20	30	55	29	30	20,55	160
	25	38	65	34,5	35,5	25,55	230
	28	42	70	37	38	28,55	300

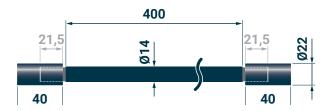
¹⁾ Abmessungen für Standardschrabanschluss.


Тур	Form	Erläuterung
SG		Stab gerade
SW	✓	Stab gewinkelt
SB		Stab als Bügel
SK	<u> </u>	Stab gekröpft

Anschlussvarianten

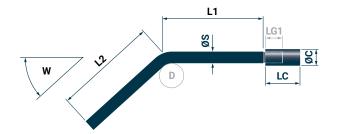
Abkürzung	Anschlussoptionen	Erläuterung
М		Einfaches Gewinde / Stab
MM		Einfaches Gewinde / Einfaches Gewinde
F		Einfaches Gewinde mit Coupler / Stab
FM		Einfaches Gewinde mit Coupler / Einfaches Gewinde
FF		Einfaches Gewinde mit Coupler / Einfaches Gewinde mit Coupler
FX		Doppelte Gewindelänge mit Coupler / Stab
FXM		Doppelte Gewindelänge mit Coupler / Einfaches Gewinde
FXF		Doppelte Gewindelänge mit Coupler / Einfaches Gewinde mit Coupler
FFX		Doppelte Gewindelänge mit Coupler / Doppelte Gewindelänge mit Coupler

[&]quot;M" = Male = Gewinde, "F" = Female = Gewinde mit Coupler. "X" für Stäbe, die nicht frei drehbar sind. Nicht frei drehbare Stäbe haben am Muffenende eine doppelte Gewindelänge (2 x LG1).

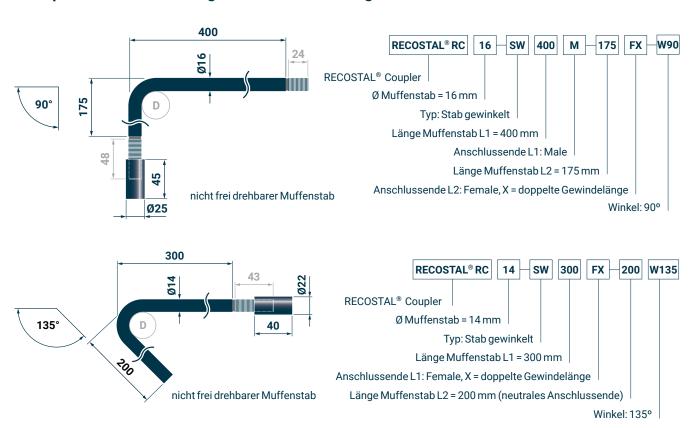

RECOSTAL® RC-SG Muffenstab gerade

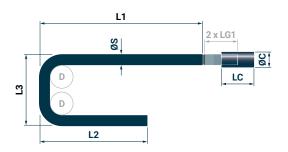
Ø Muffenstab ØS	Тур	Länge Muffenstab L 1)	Anschlussvariante Stab frei drehbar	Coupler Länge LC	Ø Außen Ø C
mm	Kürzel	mm	Kürzel	mm	mm
		400			
		600			
12		730		35	19
		960			
		1.350	M		
		400	MM		
		600	F		
14		730	FM	40	22
		960	FF		
		1.350			
		400			
		590		45	
16		840			25
		1.160			
	SG	1.650	Anschlussvariante		
	Stab gerade	400	Stab nicht frei drehbar		
		730	1/2· 1		30
20		1.040	Kürzel	55	
		1.450			
		1.890			
		400			
		910			
25		1.290	FX	65	38
		1.800	FXM		
		2.360	FXF		
		400	FFX		
		1.020			42
28		1.450		70	
		2.020			
		2.640			

¹⁾ Standardlängen, weitere Längen auf Anfrage.


Beispiel für eine vollständige Artikelbezeichnung

Anschlüsse: Female/Female, beide Seiten einfaches Gewinde

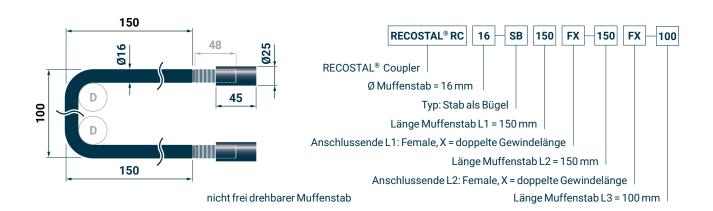

RECOSTAL® RC-SW Muffenstab gewinkelt


Beispiel hier: RECOSTAL® RC...-SW...F-...

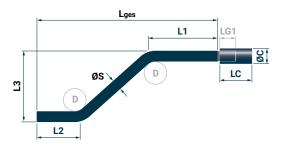
Ø		Länge	Anschluss-	Länge	änge Anschluss-		Cou	pler
Muffenstab ØS	Тур	Muffenstab L1	ende für L1	Muffenstab L2	ende für L2	Biege- winkel W	Länge LC	Ø Auβen ØC
mm	Kürzel	mm	Kürzel	mm	Kürzel	o	mm	mm
12							35	19
14	sw		M		M		40	22
16		frei	— М — F	frei	F IVI	frei	45	25
20	(Stab gewinkelt)	wählbar	FX	wählbar	FX	wählbar	55	30
25	gewinkeit)		[FX		65	38
28							70	42

Beispiel für eine vollständige Artikelbeschreibung

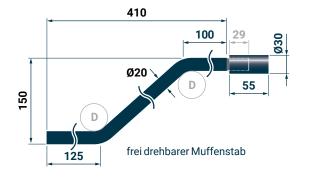
RECOSTAL® RC-SB Muffenstab als Bügel

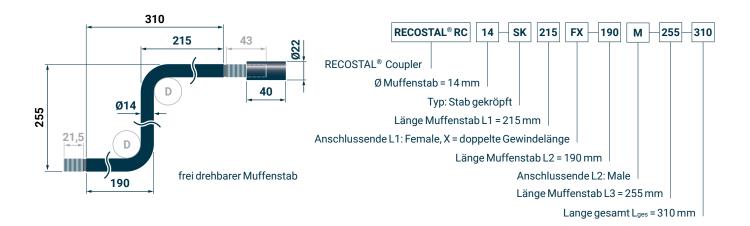


Beispiel hier: RECOSTAL® RC...-SB... FX-...


		Länge	Anschluss-	Länge	Anschluss-	Länge	Cou	ıpler
Muffenstab ØS	Тур	Muffenstab L1	ende für L1	Muffenstab L2	ende für L2	Muffenstab L3	Länge LC	Ø Auβen ØC
mm	Kürzel	mm	Kürzel	mm	Kürzel	mm	mm	mm
12							35	19
14	SB		_ M _		_ м _		40	22
16		frei	F F	frei	F F	frei	45	25
20	(Stab als	wählbar	FX	wählbar	FX	wählbar	55	30
25	Bügel)		FA				65	38
28							70	42

Beispiel für eine vollständige Artikelbezeichnung


RECOSTAL® RC-SK Muffenstab gekröpft


Beispiel hier: RECOSTAL® RC...-SW...F-...

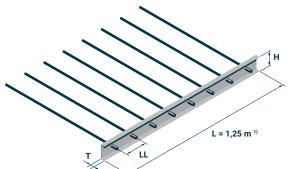
		Länge	Anschluss-	Länge	Anschluss-	Länge	Länge	Cou	ıpler
Muffenstab ØS	Тур	Muffenstab L1	ende für L1	Muffenstab L2	ende für L2	gesamt L _{ges}	Muffenstab L3	Länge LC	Ø Auβen ØC
mm	Kürzel	mm	Kürzel	mm	Kürzel	mm	mm	mm	mm
12								35	19
14	SK -		M		M			40	22
16	(Stab	frei	F F	frei	F F	frei	frei	45	25
20	gekröpft)	wählbar	FX	wählbar	FX	wählbar	wählbar	55	30
25	gekropit)		F^		F^			65	38
28								70	42

Beispiel für eine vollständige Artikelbeschreibung

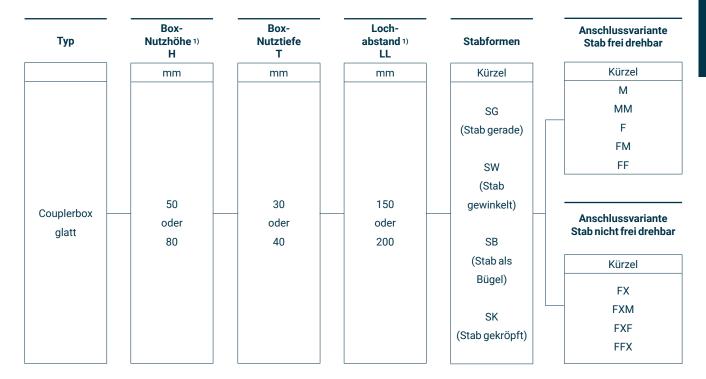
RECOSTAL® Coupler Zubehör

Montagehalterung für Einzelstäbe zur variablen Befestigung der RECOSTAL® Coupler an die Schalung mittels Nägeln.

Drehmomentschlüssel für Durchmesser von 10-40 mm. Drehmoment bis zu 400 Nm.

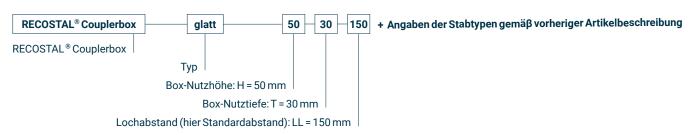


Montageleiste zur Befestigung mehrerer RECOSTAL® Coupler an die Schalung mittels Nägeln. Lochabstände sind frei wählbar.

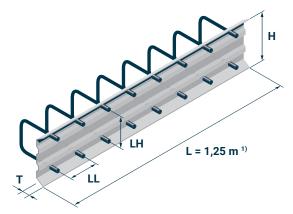

Weiteres Zubehör, wie Schutzkappen, sind auf Anfrage erhältlich.

RECOSTAL® Couplerboxen

RECOSTAL® Couplerboxen glatt



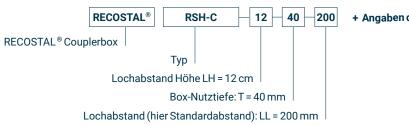
Beispiel hier mit RC-SG (Muffenstäbe gerade)



¹⁾ Standardmaße, weitere Maße auf Anfrage.

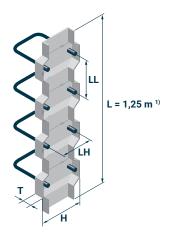
Beispiel für eine vollständige Artikelbezeichnung

RECOSTAL® Couplerbox RSH-C verzahnt gemäß EC 2



Beispiel hier mit RC-SB (Muffenstäbe als Bügel)

Тур	Lochabstand Höhe ¹) H	Box- Nutztiefe T	Lochabstand Länge 1) LL	Box- Nutzhöhe (abhängig von LH) H		
	cm	mm	mm	mm		
	10			130		
	11			140		
	12	25	150	150		
RSH-C	14	35	150 oder	170		
RSH-C	16	oder		16	200	190
	18	40	200	210		
	20			230		
	22			250		


¹⁾ Standardmaße, weitere Maße auf Anfrage.

Beispiel für eine vollständige Artikelbezeichnung

+ Angaben der Stabtypen gemäβ vorheriger Artikelbeschreibung

RECOSTAL® Couplerbox RSV-C verzahnt gemäß EC 2

Тур	Lochabstand Höhe 1) LH	Box- Nutztiefe 1) T	Lochabstand Länge 1) LL	Box- Nutzhöhe (abhängig von LH) H
	cm	mm	mm	mm
	8			110
DOVIO	11	40	150	140
RSV-C	14	40		170
	18			210

¹⁾ Standardmaße, weitere Maße auf Anfrage.

Beispiel für eine vollständige Artikelbezeichnung

Sonderlösungen

Weitere Sonderlösungen auf Anfrage.

RECOSTAL® Abschalelemente mit RECOSTAL® Coupler Schraubanschluss

Herkömmliche Ausbildung der Anschlussbewehrung. Frischbetonverbundabdichtung muss weit in den nächsten Betonierabschnitt vorverlegt werden.

Die Lösung: RECOSTAL® Abschalelemente mit RECOSTAL® Coupler bieten eine optimale Montage auf Frischbetonverbundabdichtungen mit Durchflusssicherung für den sicheren Hinterlaufschutz.

- $\bullet \;\; \text{Kombinierbar\,mit\,allen\,RECOSTAL} \\ \text{§ Abschale lementen}$
- Vorgefertigte Durchflusssicherung
- Optimal für die Anwendung und den Einsatz von Frischbetonverbundsystemen
- Freier Arbeitsraum im nächsten Betonierabschnitt
- Ressourcenschonend
- Montagefertige selbsttragende Abschlelemente mit Muffenstäben
- Fugenkategorie "verzahnt" gemäß EC 2

RECOSTAL® Bewehrungsanschlüsse

Höchste Tragfähigkeit durch profilierte Verwahrkästen, höchste Fugenkategorie verzahnt, gemäß Eurocode 2

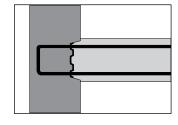
Der RECOSTAL® Bewehrungsanschluss, unverzichtbar im modernen Stahlbetonbau, zeichnet sich durch seinen stabilen, robusten Verwahrkasten mit hoher Formstabilität aus und garantiert durch seine spezielle Trapezprofilierung höchste Tragfähigkeit gemäß EC 2. Der RECOSTAL® Bewehrungsanschluss erfüllt die Anforderungen gemäß DBV-Merkblatt. Durch die zahlreichen Kombinationsmöglichkeiten können wir für jedes Detail die perfekte Sonderlösung anbieten.

Der RECOSTAL® Bewehrungsanschluss gewährleistet einen beschleunigten Einbau einer sicheren Verbindung von Stahlbetonbauteilen, welche in unterschiedlichen Betonierabschnitten erstellt werden. Decken, Wände oder Treppen können somit nachträglich in höchster Fugenkategorie "verzahnt" kraftschlüssig angeschlossen werden.

Die große Typenvielfalt bietet für unterschiedliche Detailsituationen den optimalen Anschluss, Sondertypen für besondere Lösungen stehen ebenfalls im Programm. Das Standardprogramm umfasst Rückbiegeanschlüsse in den Durchmessern 8, 10, 12, 14 und 16 mm, mit einer Elementlänge L = 1,25 m. Größere Elementlängen, Fertigung von Sondertypen und die Kombination mit Abdichtungssystemen oder ganze Projektlösungen ergänzend auf Anfrage.

Produktvorteile

- Stabiler, robuster Verwahrkasten aus verzinktem Stahlblech, formstabil
- Schneller, kostengünstiger Einbau durch einfaches Annageln an der Schalung
- Leichtes Entfernen des Blechdeckels aufgrund spezieller Formgebung
- Trapezprofilierung des Verwahrkastens mit sehr guten Verbundeigenschaften
- Abdecken aller g\u00e4ngigen Einbausituationen durch Kombinationsvielfalt
- Höchste Fugenkategorie verzahnt gemäß EC 2



Typ RSH

RECOSTAL® Bewehrungsanschlüsse Typ RSH und Typ RSV

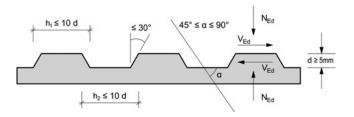
Typ RSV

Fugenkategorie "verzahnt" nach DIN EN 1992-1-1/NA

DIN EN 1992-1-1/NA § 2.8.2: Planungsgrundsätze

Auf den Bewehrungszeichnungen sind die Fugenausbildugnen anzugeben.

DIN EN 1992-1-1/NA § 6.2.5: Schubkraftübertragung in Fugen


Der EC 2 teilt die Ausbildung von Fugenoberflächen in 4 Kategorien ein. Dabei stellt die trapezprofilierte Arbeitsfuge die höchste Kategorie der Fugenausbildung für die Schubkraftübertragung dar.

Oberflächenbeschaffenheit nach EC 2 § 6.2.5 (2)	Rauigkeitswert c 1)	Reibungsbeiwert µ	Festigkeitsabminderungsbeiwert ³⁾
verzahnte Fuge	0,5	0,9	0,7
raue Fuge	0,4 ²⁾	0,7	0,5
glatte Fuge	0,2 ²⁾	0,6	0,2
sehr glatte Fuge	0	0,5	0 4)

- 1) Bei dynamischer oder Ermüdungsbeanspruchung darf der Betonverbund (Adhäsion) nicht berücksichtigt werden (c = 0).
- 2) Wenn, infolge von Einwirkungen, rechtwinklig zur Fuge Zug entsteht, ist c = 0 zu setzten.
- 3) Für Betonfestigkeitsklassen \geq C55/67 sind die Werte mit dem Faktor (1,1 f_{ck} / 500) mit f_{ck} [N/mm²] zu multiplizieren.
- 4) Der Reibungsanteil in Gl. 6.25 darf für sehr glatte Fugen bis zur Grenze $\mu \cdot \sigma_N \le 0.1 \ f_{cd}$ ausgenutzt werden.

Geometrie der verzahnten Fuge gemäß EC 2:

RECOSTAL® Bewehrungsanschlüsse erfüllen die Anforderungen des EC 2 für die höchste Kategorie "verzahnt".

Betondeckung für Bewehrungsanschlüsse nach DBV-Merkblatt

Für im Bauwerk verbleibende Kästen aus Stahlblech, sind die Betondeckungen gemäß DIN EN 1992-1-1, Abschn. 4.4 mit Tab. 4.4DE an der ungünstigsten Stelle einzuhalten. Für das Kastenblech darf das Vorhaltemaß Δ_{cdev} um 5 mm reduziert werden.

Anforderungen an Verwahrkästen nach DBV-Merkblatt

Bewehrungsanschlüsse, die keine verzahnte Oberfläche besitzen, sind durch Versuche in die Kategorien "rau", "glatt" oder "sehr glatt" einzustufen. Nicht klassifizierte Verwahrkästen sind immer in die Fugenkategorie "sehr glatt" einzuordnen.

Reduzierte Stahlspannung

Nach DIN EN 1992-1-1, 8.3 (NA.5), darf die Bewehrung im Bereich von Rückbiegestellen und unter vorwiegend ruhenden Einwirkungen im Grenzzustand der Tragfähigkeit nur zu 80% der sonst zulässigen Werte der rechnerischen Spannungs-Dehnungslinie des Betonstahls nach DIN EN 1992-1-1, Bild 3.8 ausgenutzt werden. Der Grundwert der Verankerungslänge $I_{b,rqd}$ für diese Bewehrung nach DIN EN 1992-1-1, 8.4.3 GI (8.3) darf dann auch mit dem reduzierten Bemessungswert der Stahlspannung $f_{yd,red} = 0,8 \; f_{yk} / \; \gamma_s$ ermittelt werden.

Schubkraft längs zur Betonierfuge

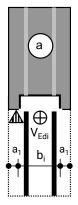
[R1] Gl. 6.25: Bemessungswert der Schubtragfähigkeit

Gesamttragfähigkeit = Traganteile [Beton] + [Reibung] + [Verbundbewehrung] ≤ Maximaltragfähigkeit

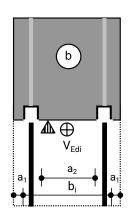
$$V_{Rdi} = c \cdot f_{ctd} + \mu \cdot \sigma_N + V_{Rdi,s} \le V_{Rdi,max} [N/mm^2]$$

Dabei ist

 $f_{ctd} = \alpha_{ct} \cdot f_{ctk;0,0.5} / \gamma_c$ (mit $\alpha_{ct} = 0.85$ und $\gamma_c = 1.5$ nach 3.1.6 (2)P); $\sigma_N < 0.6 f_{cd}$ (positiv für Druck und negativ für Zug);


 $V_{Rdi,s} = \rho \cdot f_{yd,red} (1,2\mu \cdot \sin\alpha + \cos\alpha)$ dabei ist $\rho = A_s / A_i$ und $f_{yd,red} = 400 [N/mm^2] / \gamma_s (0,8 f_{yk} an der Rückbiegestelle);$

 $V_{Rdi,max} = 0.5 \cdot v \cdot f_{cd}$ (keine Abminderung auf 0.3 $V_{Rdi,max}$)


Tabelle 1. Einteilung von Fugenoberflächen nach [R1], 6.2.5

Oberflächen- beschaffen- heit nach EC 2 § 6.2.5 (2)	Rauigkeits- wert c 1)	Reibungs- koeffizient µ	Festigkeits- abminderungs- beiwert V ³⁾
verzahnte Fuge	0,5	0,9	0,7
raue Fuge	0,4 2)	0,7	0,5
glatte Fuge	0,2 2)	0,6	0,2
sehr glatte Fuge	0	0,5	0 4)

- 1) Bei dynamischer oder Ermüdungsbeanspruchung darf der Betonverbund (Adhäsion) nicht berücksichtigt werden (c = 0).
- 2) Wenn infolge Einwirkungen rechtwinklig zur Fuge Zug entsteht, ist c = 0 zu setzen.
- 3) Für Betonfestigkeitsklassen ≥ C55/67 sind die Werte mit dem Faktor (1,1 f_{ck} / 500) mit f_{ck} in [N/mm²] zu multiplizieren
- 4) Der Reibungsanteil in Gl. 6.25 darf für sehr glatte Fugen bis zur Grenze $\mu \cdot \sigma_N \leq 0.1 \ f_{\rm cd}$. ausgenutzt werden.

a₁ < 50 mm

a₁ < 50 mm

a₂ ≥ 50 mm mit Oberflächenbeschaffenheit nach DIN EN 1992-1-1, 6.2.5

 $a_1 \ge 50$ mm darf wie a_2 auf b_i angerechnet werden, dabei ist aber nur die geringere Oberflächenrauigkeit von Verwahrkasten oder Betonierfuge für b_i zu berücksichtigen. Alternativ darf die Einzelbreite von Betonierfugenfläche oder Verwahrkasten mit der jeweiligen Oberflächenrauigkeit für b_i berücksichtigt werden.

Querkraft quer zur Betonierfuge

[R1] GI. (6.2): Querkraftwiderstand ohne Querkraftbewehrung mit Abminderung über Rauigkeitsbeiwert c

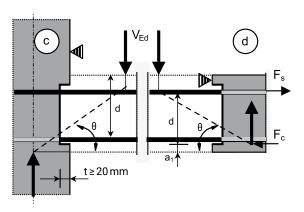
$$\begin{split} &V_{Rd,c} = (c \ / 0,5) \cdot [0,15 \ / \ \gamma_c \cdot k \cdot (100 \rho_1 \cdot f_{ck})^{1/3} + 0,12 \sigma_{cp}] \cdot b_w \cdot d \ mit \\ &k = 1 + \!\!\!\!\!\! \sqrt{(200/d \ [mm])} \leq 2,0 \ und \ c \ nach \ Tabelle \ 1 \end{split}$$

[R1] GI. (6.8): Querkraftwiderstand mit Querkraftbewehrung

$$V_{Rd,s} = (A_{sw} / s) \cdot f_{ywd} \cdot z \cdot \cot \theta$$

mit z = 0,9d bzw. z \leq d - $c_{v,i}$ - 30 mm und f_{vwd} = f_{vk} / γ_s

Maximale aufnehmbare Querkraft mit Querkraftbewehrung (sehr glatte Fuge unzulässig): [R1] GI. (6.9) für 90°-Bügelbewehrung, im Bereich der Rückbiegesteile Begrenzung auf 30 %

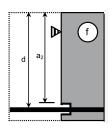

$$V_{Ed} \le 0.30 \cdot V_{Rd,max} = 0.30 \cdot b_w \cdot z \cdot v_1 \cdot f_{cd} / (\cot \theta + \tan \theta)$$

mit $v_1 = 0.75 \cdot (1.1 - f_{ck} / 500) \le 0.75$

[R1] GI. (6.7aDE): Begrenzung der Druckstrebenneigung, aber mit Begrenzung auf $\theta \le 45^\circ$ im Bereich $I_e = 0.5 I_e \cdot \cot \theta \cdot d$ beiderseits der Fuge $1.0 \le \cot \theta \le [(1.2 + 1.4\sigma_{cd} / f_{cd})] / [(1 - V_{Rd,max} / V_{Fd})] < 3.0$

mit [R1] GI. (6.7bDE):

$$\begin{split} &V_{Rd,cc} = 0.48 \cdot c \cdot f_{ck}^{-1/3} \cdot \left(1 - 1.2\sigma_{cd} / f_{cd}\right) \cdot b_w \cdot z \text{ mit c nach Tabelle 1;} \\ &\sigma_{cd} = N_{Ed} / Ac > 0 \text{ als Druckspannung!} \end{split}$$


Hinweise: Die anzurechnende Längsbewehrung in GI. (6.2) ist die nach statischem System auf der Zugseite liegende (z. B. c, d oder e). Im Bild d und e ist die um a_1 zu verringernde Nutzhöhe d wegen der Betonierschwierigkeiten bei $a_1 < 50$ mm in der Druckzone dargestellt.

Wand - Decke

Decke -Decke

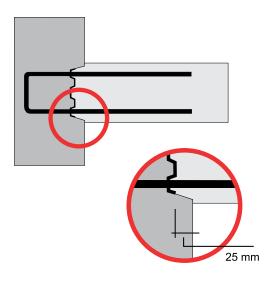
a₂ ≥ 50 mm mit
 Oberflächenrauigkeit nach DIN EN
 1992-1-1, 6.2.5 (siehe Tabelle 1)

Betonierabschnittsgrenze,

[R1] DIN EN 1992-1-1 mit DIN EN 1992-1-1/NA

RECOSTAL® Bewehrungsanschluss Typ RSH

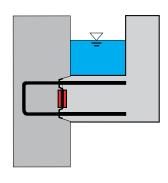
mit Trapezprofilierung für die Beanspruchung in Kastenquerrichtung.

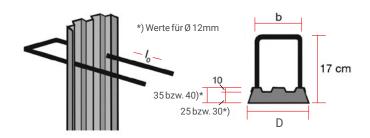

Der RECOSTAL®-Bewehrungsanschluss RSH erfüllt die Anforderungen der DIN EN 1992-1-1 für die höchste Oberflächenbeschaffenheit Kategorie "verzahnt" bei Beanspruchung in Kastenquerrichtung. Der RECOSTAL® Bewehrungsanschluss Typ RSH erfüllt die Anforderungen des DBV Merkblattes "Rückbiegen von Betonstahl und Anforderungen an Verwahrkästen nach EC 2" (Fassung Januar 2011) für die höchste Fugenkategorie "verzahnt" bei Beanspruchung in Kastenquerrichtung. Somit ist keine bauaufsichtliche Zulassung erforderlich!

Technische Daten

- Verwahrkasten mit Trapezprofilierung, Fugenkategorie "verzahnt" nach DIN EN 1992-1-1, höchste Querkrafttragfähigkeit
- Betonstahl B500B, B500C nach DIN 488, Ø = 8 mm – 14 mm (16 mm)
- Biegerollendurchmesser an der Rückbiegestelle dbr ≥ 6 Ds
- 8 Standardprofile, Bügelbreite 10 cm 22 cm, kleinere bzw. größere Bügelbreiten auf Anfrage
- Standard-Elementlänge L = 1,25 m, Fixlängen bis 2,20 m auf Anfrage

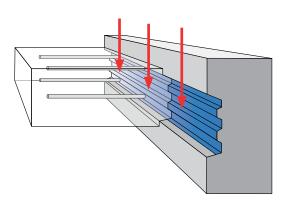
Erhöhter Korrosionsschutz


Beim Typ RSH liegt der Kasten planmäßig 25 mm zurück



RSH active – Bewehrungsanschluss mit aktiver Fugenabdichtung

Für den Einsatz in wasserbeanspruchten Arbeitsfugen kann der RSH-Bewehrungsanschluss mit einer beidseitigen hochaktiven Betonitbeschichtung hergestellt werden. Zugelassen für Wasserdruck bis zu 2,0 bar.


Standard	Тур	Ø (mm) / s (cm)	Übergreifungs- länge I_0 (cm)	Bügelhöhe h (cm)	Bügelbreite b (cm)	Kastenbreite D (cm)
← 100 →		8/15	32	17	10	12
		8/20	32	17	10	12
	DOLL 40	10/15	39	17	10	12
170	RSH 10	10/20	39	17	10	12
*		12/15	46	17	10	12
← 120		12/20	46	17	10	12
		8/15	32	17	11	13
▲ 110 →		8/20	32	17	11	13
1		10/15	39	17	11	13
170	RSH 11	10/20	39	17	11	13
*		12/15	46	17	11	13
← 130 ←		12/20	46	17	11	13
		8/15	32	17	12	14
4 −120→		8/20	32	17	12	14
1 [[]]		10/15	39	17	12	14
170	RSH 12	10/20	39	17	12	14
+		12/15	46	17	12	14
		12/20	46	17	12	14
		8/15	32	17	14	16
4─140─►		8/20	32	17	14	16
1	RSH 14	10/15	39	17	14	
170						16
J ///		10/20	39	17	14	16
160		12/15	46	17	14	16
		12/20	46	17	14	16
◄ — 160 —►		8/15	32	17	16	18
† (<u> </u>		8/20	32	17	16	18
70	RSH 16	10/15	39	17	16	18
		10/20	39	17	16	18
180		12/15	46	17	16	18
		12/20	46	17	16	18
◄ —180 —▶		8/15	32	17	18	20
		8/20	32	17	18	20
70	RSH 18	10/15	39	17	18	20
		10/20	39	17	18	20
200		12/15	46	17	18	20
		12/20	46	17	18	20
← 200 — ►		8/15	32	17	20	22
		8/20	32	17	20	22
,	RSH 20	10/15	39	17	20	22
		10/20	39	17	20	22
220		12/15	46	17	20	22
		12/20	46	17	20	22
→ 220 →		8/15	32	17	22	24
		8/20	32	17	22	24
	DOLL OO	10/15	39	17	22	24
`	RSH 22 —	10/20	39	17	22	24
240		12/15	46	17	22	24
		12/20	46	17	22	24

22 Querkraft quer zur Betonierfuge

Höhste Fugenkategorie "verzahnt"

Grundlagen der Ermittlung:

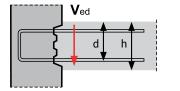
- DIN EN 1992-1-1/NA
- DBV-Merkblatt "Rückbiegen...nach Eurocode 2", Januar 2011

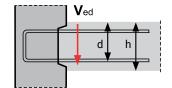
Bemessungsbeispiel - Aufnehmbare Querkraft

 $\label{prop:continuous} \mbox{Aufnehmbare Querkraft ohne Querkraftbewehrung mit Abminderung \"{u}\mbox{ber Rauigkeitsbeiwert c:} \\$

$$V_{Rd,c} = (c \ /0,5) \cdot [C_{Rd,c} \cdot k \cdot (100 \rho_1 \cdot f_{ck})^{1/3} + k_1 \cdot \sigma_{cp}] \cdot b_w \cdot d \ \ (6.2.a)$$

Werte	Erläuterungen					
h = 20 cm	Bauteilhöhe					
d = 17 cm	Nutzhöhe					
b _w = 1,0 m	1m Plattensstreifen					
C20/25	Tab. 3.1 » f _{ck} = 20 N/mm²					
c = 0,5	6.2.5 (2) ▶ Rückenblech verzahnt					
$C_{Rd,c} = 0.15/\gamma_c = 0.10$	(NA, 6.2.2(1)), $\gamma_c = 1,5$					
k = 1 +√(200/170) = 2,08	k = 1 +√(200/d [mm]) ≤ 2,0					
$ \rho_1 = 7,54/(100 \times 17) $ = 4,435 · 10 ⁻³	$(A_{sl}/b_w \cdot d) \le 0.02$ gew. mit Ø 12/15 cm = 7,54 cm²/m, einschnittig					
K1 = 0,12	NA, 6.2.2 (1)					
$\sigma_{\rm cp}$ = 0	keine Normalkraft im Querschnitt infolge äußerer Einwirkung oder Vorspannung					


 $V_{Rd,ct} = (0.5/0.5) \cdot [0.10 \cdot 2.0 \cdot (100 \cdot 4.435 \cdot 10^{-3} \cdot 20)^{1/3} + 0] \cdot 1.0 \cdot 0.17 \cdot 10^{3}$ = 70.4 kN/m



Wichtiger Hinweis:

Bei reduzierten Verankerungs- und Übergreifungslängen sind die Tragfähigkeitswerte entsprechend abzumindern.

Querkrafttragfähigkeit (kN/m)

Querkrafttragfähigkeit (kN/m) eines Plattenanschlusses an eine Stb.- Wand ohne Querkraftbewehrung in Abhängigkeit zur Fugenkategorie und des Stahlquerschnittes bei Einsatz von Bewehrungsanschlüssen.

Die Tabellenwerte gelten unter Ansatz der gemäß EC 2 erforderlichen vollen Verankerungs- und Übergreifungslängen.

- Tabellenwerte $V_{Rd,c}$ [kN/m]
- Alle Werte sind für σ_{cp} = 0 ermittelt

Nutzhöhe d (cm)	Тур	Ø Stabdurchmesser/	Fugenkategorie verzahnt V _{Rd,c,verz}			Fugenkategorie glatt V _{Rd,c,glatt}		
		Stababstand	C 20/25	C 25/30	C 30/37	C 20/25	C 25/30	C 30/37
		8/15	40,18	43,28	45,99	16,07	17,31	18,40
11	RSH10	10/15	46,64	50,24	53,39	18,66	20,10	21,36
		12/15	52,65	56,72	60,27	21,06	22,69	24,11
		8/15	42,58	45,86	48,74	17,03	18,35	19,50
12	RSH11	10/15	49,42	53,24	56,57	19,77	21,29	22,63
		12/15	55,79	60,11	63,87	22,32	24,04	25,55
		8/15	44,91	48,38	51,41	17,96	19,35	20,56
13 RSH	RSH12	10/15	52,13	56,16	59,68	20,85	22,46	23,87
		12/15	58,86	63,40	67,37	23,54	25,36	26,95
		8/15	49,41	53,22	56,56	19,76	21,29	22,62
15	RSH14	10/15	57,35	61,78	65,65	22,94	24,71	26,26
		12/15	64,75	69,75	74,12	25,90	27,90	29,65
		8/15	53,71	57,85	61,50	21,48	23,14	24,60
17	RSH16	10/15	62,34	67,16	71,36	24,94	26,86	28,55
		12/15	70,38	75,82	80,57	28,15	30,33	32,23
		8/15	57,84	62,31	66,21	23,14	24,92	26,48
19	RSH18	10/15	67,14	72,33	76,86	26,86	28,93	30,74
		12/15	75,80	81,65	86,77	30,32	32,66	34,71
		8/15	61,09	65,80	69,93	24,43	26,32	27,97
21	RSH 20	10/15	70,91	76,38	81,17	28,36	30,55	32,47
		12/15	80,05	86,23	91,64	32,02	34,49	36,66
		8/15	63,48	68,38	72,67	25,39	27,35	29,07
23	RSH 22	10/15	73,69	79,38	84,35	29,47	31,75	33,74
		12/15	83,19	89,61	95,23	33,28	35,85	38,09

Wichtiger Hinweis:

Bei reduzierten Verankerungs- und Übergreifungslängen sind die Tragfähigkeitswerte entsprechend abzumindern.

Standard Typ RSV

RECOSTAL® Bewehrungsanschluss Typ RSV mit Trapezprofilierung für die Beanspruchung in Elementlängsrichtung.

Schubkraft längs zur Betonierfuge

Höchste Fugenkategorie "verzahnt"

Bemessungsbeispiel - Schubtragsfähigkeit

Gesamttragfähigkeit =

Traganteile [Beton] + [Reibung] + [Verbundbewehrung] ≤ Maximaltragfähigkeit

Beispielrechnung: Beton C20/25

Werte	Erläuterungen					
b = 17 cm	Schubfläche					
σ _N = 0	Normalspannung senkrecht zur Fuge N _{Ed} = Normalkraft infolge äußerer Einwirkungen oder Vorspannung die gleichzeitig mit der Querkraft wirken kann.					
c = 0,5	c nach DIN EN 1992-1-1, 6.2.5(2) (verzahnt)					
μ = 0,9	μ nach DIN EN 1992-1-1, 6.2.5(2) (verzahnt)					
$f_{\text{ctd}} = \alpha_{\text{ct}} \cdot f_{\text{ctk};0.05} / \gamma_{\text{c}}$ = 0,85 \cdot 1,5/1,5 = 0,85	Bemessungswert der zentrischen Zugfestigkeit des Betons mit $f_{clk;0.05}$ = 1.5 N/mm² gem. DIN EN 1992-1-1, Tab. 3.1 und y_c = 1,5 für Beton gem. DIN EN 1992-1-1, Tabelle 2.1 N					
	a _{ct} = 0,85 gem. DIN EN 1992-1-1 / NA 3.1.6 (2)P					
Asl = Ø10/15 zweischnittig = 5,24 x 2 = 10,48 cm²/m	Querschnitt, der die Fuge kreuzenden Bewehrung je Längeneinheit, zweischnittig					
f _{yd,red} = 0,8 · 500/1,15 = 348 N/mm ²	Bemessungswert der Streckgrenze des Betonstahls mit f_{yk} = 500 N/mm² gem. DIN EN 1992-1-1 / NA 3.2.2(3P) γ_c = 1,15; reduzierte Stahlspannung 80 % f_{yd} gemäß DIN EN 1992-1-1 / NA 8.3 (5)P					
α = 90°	Winkel der die Fuge kreuzenden Bewehrung					
v = 0,7	v gemäß DIN EN 1992-1-1 / NA 6.2.2(6)					
$f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_c$ = 0,85 \cdot 20/1,5 = 11,33 N/mm ²	Bemessungswert der einaxialen Festigkeit des Betons mit f_{ck} = 20 N/mm² gem. DIN EN 1992-1-1, Tab.3.1 a_{cc} = 0,85 und a_{cc} gem. DIN EN 1992-1-1, NA 3.1.6(1)P und γ_c = 1,5 gem. DIN EN 1992-1-1 Tab.2.1N					

Traganteil Beton

 $V_{Rdi,c} = (c \cdot f_{ctd}) = (0,5 \cdot 0,85)$ = 0,425 N/mm²

Traganteil Reibung

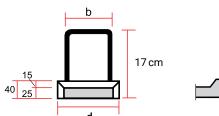
$$V_{Rd,\mu} = (\mu \cdot \sigma_N) = (0.9 \times 0)$$

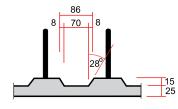
= 0

Traganteil - Bewehrung

$$\begin{aligned} V_{Rd,sy} &= \rho \cdot f_{yd} \cdot (1,2\mu \cdot \sin \alpha + \cos \alpha) \\ &= 10,48/(17 \cdot 100) \cdot 348 \cdot (1,2 \cdot 0,9 \cdot \sin 90^\circ + \cos 90^\circ) \\ &= 2,32 \, N/mm^2 \end{aligned}$$

Faktor 1,2 nach DIN EN 1992-1-1, NA 6.2.5


Gesamttragfähigkeit


$$V_{Rdi} = V_{Rdi,c} + V_{Rd,sy} < V_{Rdi,max}$$

> V_{Ed}

Die Werte gelten für volle Verankerungs- und Übergreifungslängen, bei reduzierten Längen sind die Tragfähigkeitswerte entsprechend abzumindern.

$$\begin{aligned} V_{Rdi,max} &= 0.5 \cdot v \cdot f_{cd} \\ &= 0.5 \cdot 0.7 \cdot 11,33 = 3.97 \text{ N/mm}^2 \\ &\triangleq 3.97 \cdot 10^3 \cdot 0.17 = 674,9 \text{ kN/m} \end{aligned}$$

$$V_{Rdi} &= (0.425 + 2.32) \cdot 10^3 \cdot 0.17$$

= 466,65 kN/m = maßgebend < V_{Rdi,max} = 674,9 kN/m

Standar	d	Тур	Ø (mm) / s (cm)	Übergreifungslänge I_0 (cm)	Bügelhöhe h (cm)	Bügelbreite b (cm)	Kastenbreite D (cm)
	Т	DOV 0	8/15	32	17	8	11
	1,25 m	RSV 8	10/15	39	17	8	11
S		RSV 11	8/15	32	17	11	14
			10/15	39	17	11	14
			12/15	46	17	11	14
			8/15	32	17	14	17
		RSV 14	10/15	39	17	14	17
7131			12/15	46	17	14	17
			8/15	32	17	18	21
	<u> </u>	RSV 18	10/15	39	17	18	21
			12/15	46	17	18	21

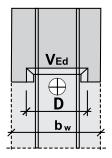
Tragfähigkeitstabelle für die Querkraftbeanspruchung in Elementlängsrichtung

Die Tabellenwerte gelten unter Ansatz der nach DIN EN 1992-1-1 erforderlichen Verankerungs- und Übergreifungslängen.

- Tabellenwerte in kN/m
- Alle Werte sind für σ_{Nd} = 0 ermittelt

Grundlagen der Ermittlung:

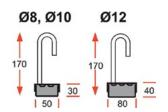
- DIN EN 1992-1-1 § 6.2.5 (6.25)
- DBV Merkblatt "Rückbiegen von ..." (Fassung 2011)
- Oberflächenbeschaffenheit "verzahnt"

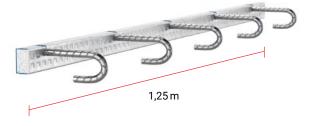

Annahmen:

 $\sigma_N = 0$; $45^\circ \le \alpha \le 90^\circ$

Maßgebend:

 $max. \ V_{ed} < V_{Rd,i} < V_{Rd,i \ max}$ z.B. RSV 8 - 8/15 cm,

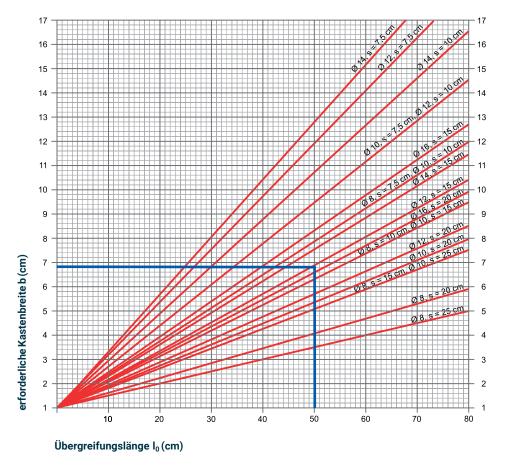

max. V_{ed} = 298,56 kN/m = maßgebend



Schubfläche D (mm)			Fugenkategorie "verzahnt"							
	Тур	Ø (mm)/ s (cm)	' (**)11/25		C 25/30		C 30/37			
		((),	$V_{Rd,i}$	V _{Rd,i max}	$V_{Rd,i}$	V _{Rd,i max}	$V_{Rd,i}$	V _{Rd,i max}		
110	D01/40	8/15	298,56	436,21	307,91	545,55	314,13	654,50		
110	RSV8	10/15	440,63	436,21	449,98	545,55	456,20	654,50		
140		8/15	311,31	555,17	323,21	694,33	331,12	833,00		
	RSV11	10/15	453,38	555,17	465,28	694,33	473,19	833,00		
		12/15	626,27	555,17	638,17	694,33	646,08	833,00		
170	RSV14	8/15	324,06	674,90	338,51	843,12	348,12	1011,50		
		10/15	466,65	674,90	480,58	843,12	490,19	1011,50		
		12/15	639,02	674,90	653,47	843,12	663,07	1011,50		
210		8/15	341,06	832,76	358,91	1041,50	370,78	1249,50		
	RSV18	10/15	483,13	832,76	500,98	1041,50	512,85	1249,50		
		12/15	656,02	832,76	673,87	1041,50	685,73	1249,50		

Standard Typ VHQ

RECOSTAL® einreihiger Bewehrungsanschluss Typ VHQ



Betonstahl: B500B, B500C

Standard	Тур	Ø (mm) / s (cm)	Übergreifungslänge I_0 (cm)	Stababstand s (cm)
		8/15	32	15
		8/20	32	20
		8/25	32	25
		10/15	39	15
	VHQ	10/20	39	20
		10/25	39	25
		12/15	46	15
		12/20	46	20
		12/25	46	25

Diagramm zur Bestimmung der produktionstechnisch erforderlichen Kastenbreite bzw. max. herstellbaren ${\bf I_0}$ -Länge

Erläuterungen zum Diagramm:

b: Produktionstechnisch erforderliche Kastenbreite für einreihige Bewehrungsanschlüsse. Für 2-reihige ist der Wert zu verdoppeln.

Beispiel:

Typ SB

(2-reihiger Beweherungsanschluss)

Ø 12, s = 15 cm, l₀ = 50 cm

► Kastenbreite: 2 x 6,8 = 14 cm

RECOSTAL® Sondertypen sind nach Kundenwunsch in vielfältigen Ausführungen herstellbar 27

Sonderlösungen und Projektlösungen auf Anfrage

Sondertypen

^{*}Nicht erhältlich für den deutschen Markt

RECOSTAL® Bewehrungstechnik

In Kontakt treten.

Für lokale Kontaktdaten, besuchen Sie bitte unsere Webseite.

